

Global challenges
Current impact
Future challenges for photonics

Global Challenges for Photonics

Dr John Lincoln Chief Executive

PHOTONICS

4 Grand Challenges

From 2018 UK industry Strategy

AI and Data Economy

Ageing Society

Clean Growth

Future of Mobility

Unpick, globalise and update

Al and Data

Data Access, Security, Accuracy, Interpretation

White the second second

- Data access
 - Time, volume, speed, delay
- Security
- Accuracy
 - Machine learning reproduces errors in teaching data
- Interpretation

Aging Society

Greater Productivity

Efficient Healthcare

• Universal challenge in many countries

- Shifting demographics
 - Retired > working
- Double Economic challenge
 - More costs, less tax income

Efficiency and productivity

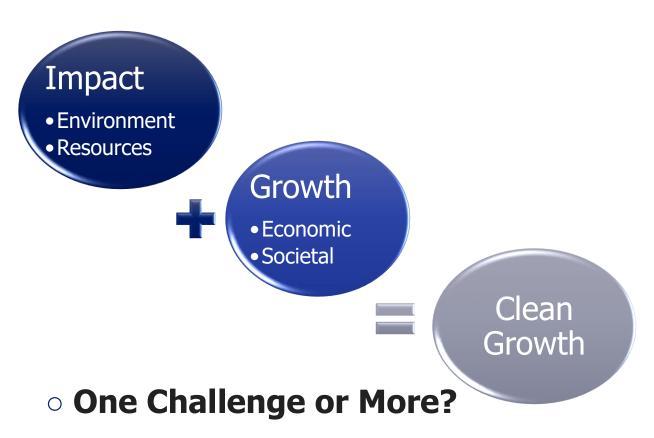
- In health and social care
- In entire economy

Future Mobility

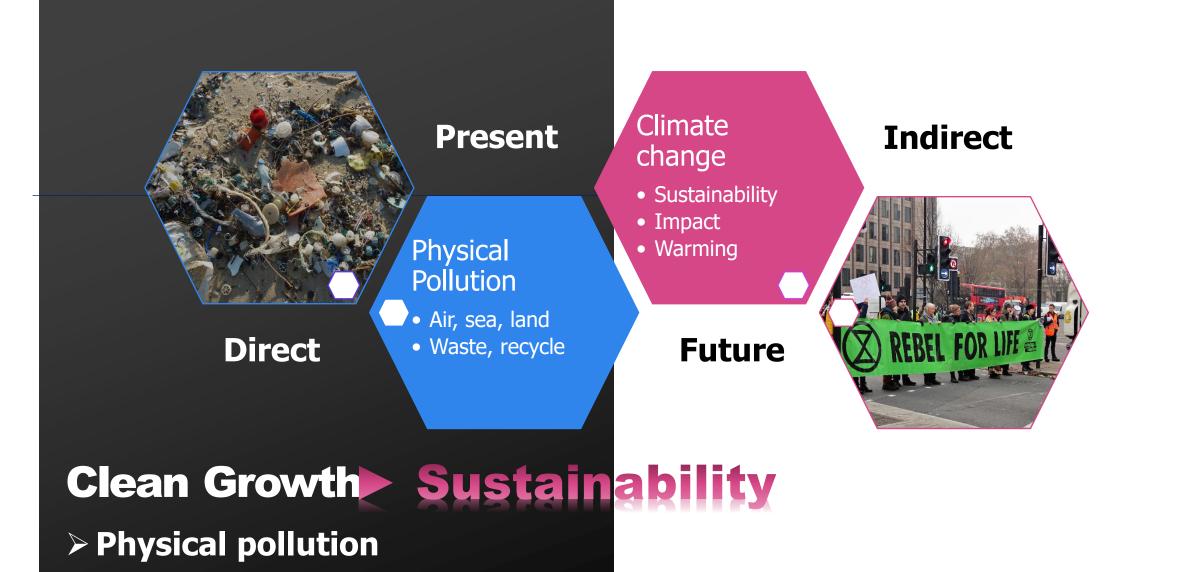
Transport efficiency, availability and impact

\circ The challenge of future mobility

• Ubiquitous with autonomy – why?


\circ Efficiency at the core

- In Time / Productivity
- In Resources
- In Availability
 - Without risk


Clean Growth

• What's making the news?

> Climate impact

Economic Patriotism

- De-globalisation, sovereignty politics of extremes
- > Uncertainty

Another set of Headlines

Another challenge

- Globalisation in reverse
 - Focus on local & national first
 - Focus on extremes not medians
 - Lake of compromise to median voter
- \circ Uncertainty is the new certainty

Defence & Security

> Agile, Affordable, On-Demand

Minimum viable (affordable) volumeCOTS?

• Adaptable to the unpredictable

- Inservice modification/upgrade
- Rapid development
 - Research, develop, deploy in <decade
- UK supply chain
 - Sovereign capability

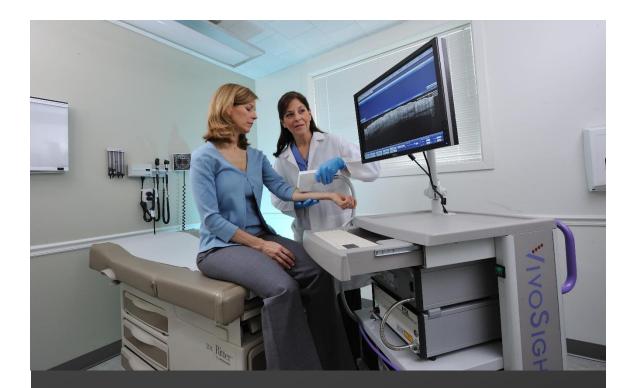
21st Century Global Challenges

Access, Security, Accuracy, Interpretation

Air, land, sea, waste & recycling

Sustainability, resource use

Agile, affordable, available



...what do these mean for photonics

- Real time diagnosis
- Treatment- photo-dynamic therapy/ drug activation
- Non-invasive monitoring O₂ & glucose to lifestyle
- Precision surgery

Challenges for Photonics

- Fit to healthcare pathways
- Enable automation / reduce health professional touch time
- Individualisation vs minimum viable
 product vs cost
- Complex system integration photonics only fraction of cost

Photonics for Health and Care

Devilish practical detail Photonics is only the start

• 3d sensing

- Driver assist and autonomous
- Distance, location, speed in real-time

• Laser manufacturing

• Lighter, stronger, cheaper chassis

LIDAR Point Cloud image

Challenges for Photonics

- 3d sensing
 - Range vs Safety vs Weather
 - Merging data streams
 - Assistance vs autonomy- what & when
 - Multifunctionality
- Processing dissimilar materials
 - Batteries and E-motors

Light for efficient transport

Autonomy is a wild frontier Lasers are in manufacturing, but vehicles are changing

The internet is built on optical data transmission

- Optics being used for ever shorter distances inside datacentre, inside circuit board
- Nothing moves faster than speed of light

Challenges for Photonics

Latency critical in Digital 2.0

- Remote health, gaming, autonomy, finance Capacity scaling going cost linear
 - Bandwidth limit of optical amplifier & fibre vs consumer asking more b/w for less

Integration

On-chip, in-chip on-board at volume
 Connectivity as essential utility

Optics for real-time data

Biggest photonics application Future latency and integration without compromise

Energy GenerationPhotovoltaics

- Efficiency
- Building integration
- Monitoring
 - Turbines
 - Combustion
 - Pollution

Pollution

- Optics = fragile & clean
 - How to avoid single use packaging & maintain performance
 - Operating in contaminated environments
 - Minimise consumable use
 - Recycling content

Energy Use & Productivity Lasers for Manufacturing

- Cutting, joining, marking, finishing, 3d printing
- Efficiency electrical to optical to **parts**
- Data processing Energy per bit of data processed
 - Datacentres use % of global energy
- Lighting

Priority?

•

- Recruitment
 - Appeal to next generation
- Be part of solution not problem

Optics for the environment

• Photonics is globalised

• Viable return = global customers

Challenges for Photonics

- Building and maintaining supply chains
- Uncertainty vs investment horizon in building scale
- Access to capital
- Adaptable versatile solutions
 - Lower min viable volume
 - More Local supply chains

Optics & Photonics in economic patriotism

Adapt and thrive

Sesso 2019 Conference ber 2019 at NTU, Nanyang Executive Centre (Auditorii 3: The enabling Technology for Global Challenges

ersity of Southampti

ssor Tjin Sw

Kara O.

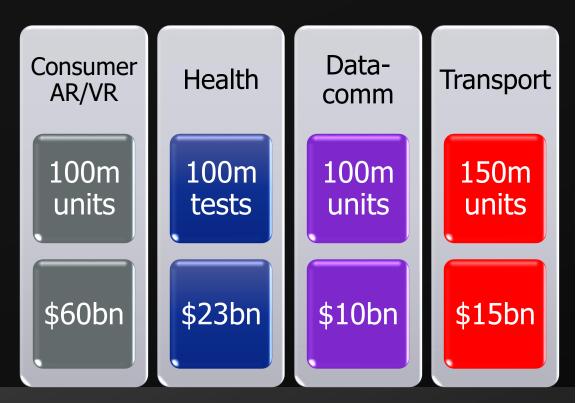
Inspiration led Innovation

"A lot of times, people don't know what they want until you show it to them." Steve Jobs

....for the consumer

2 & 3D sensing

- Cameras and VCSELS for
 - Facial recognition & cameras
 - Augmented reality
 - Gesture control
- **Displays**
 - Micro to very macro
- Lighting

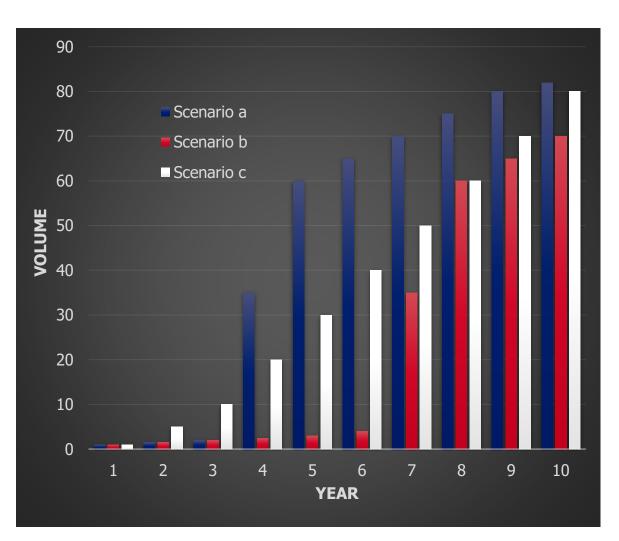

Challenges for Photonics

- Technology
 - Integration, size weight and power
- Manufacturing challenges
 - Cost and volume
 - Minimum volumes in millions
 - Time to production
 - Time to ramp

Optics for the consumer

Leverage knowledge from data storage, cameras and food

Mega opportunities - the ultimate challenge


How to get from hundreds to millions

- Multiple applications needing 100 million units <10 years
 - ~\$100bn opportunity
- \circ How to scale from zero to hero
 - Without crashing

Solving scale up challenge

- Need solutions scale <u>near instantly</u> from hundreds to millions-
 - No intermediate market
 - "Supply all our needs or none".
- Innovations in:-
 - Integration & manufacturing research key
 - Delivering sub-linear cost scaling
- Scale of opportunity is not in question
 - Does it matter how many billions?
 - Step is unpredictable
- Can interventions smooth demand?
- Where will all the people come from?

Eight challenges

Health cost, demographics Productivity in care & economy

...how to apply photonics

Air, land, sea, waste & recycling

Sustainability

Agile, affordable, available

Ramp, Volume, Timing

John.Lincoln@photonicsuk.org

www.photonicsuk.org

@photonics_UK

